#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Genetic testing – polygenic score


Authors: Jaroslav A. Hubáček 1,2
Authors‘ workplace: Centrum experimentální medicíny, IKEM, Praha 1;  III. interní klinika – endokrinologie a metabolismu 1. LF UK a VFN v Praze 2
Published in: AtheroRev 2023; 8(2): 95-101
Category: Reviews

Overview

In recent years, efforts to incorporate genetic dispositions into clinical practice have led to the development of genetic risk scores (GRS). These should summarise the complex genetic risk as a single value derived from the results of testing a dozens to thousands of individual polymorphisms. There are several types of genetic risk scores. The unweighted GRS uses the simple sum of the risky alleles present, the weighted GRS takes into account the relative effect of individual variants on the phenotype (OR, HR or β coefficient), and finally the polygenic risk score (which includes up to hundreds of thousands of polymorphisms) also takes into account the linkage between the individual alleles. A number of studies have confirmed the significant effect of GRS on the estimation of disease risk or prognosis. Because studies are highly heterogeneous in the number and selection of polymorphisms included in GRS calculations, it is not possible to determine what nominal value already represent a clinical risk. There is also a significant lack of studies looking at interactions between GRS and lifestyle. GRS analyses represent a next step for the use of genetic information in everyday, primarily preventive, clinical diagnosis.

Keywords:

cardio-vascular disease – genetic – genetic risk score – prediction


Sources

1. Rogers J. The finished genome sequence of Homo sapiens. Cold Spring Harb Symp Quant Biol 2003; 68: 1–11. Dostupné z DOI: <http://dx.doi. org/10.1101/sqb.2003.68.1>.

2. Palomaki GE, Melillo S, Bradley LA. Association between 9p21 genomic markers and heart disease: a meta-analysis. JAMA 2010; 303: 648–656. Dostupné z DOI: <http://dx.doi.org/10.1001/jama.2010.118>.

3. Del Bosque-Plata L, Martínez-Martínez E, Espinoza-Camacho MÁet al. The role of TCF7L2 in type 2 diabetes. Diabetes 2021; 70: 1220–1228. Dostupné z DOI: <http://dx.doi.org/10.2337/db20–0573>.

4. Day FR, Loos RJ. Developments in obesity genetics in the era of genome- wide association studies. J Nutrigenet Nutrigenomics 2011; 4: 222–238. Dostupné z DOI: <http://dx.doi.org/1010.1159/000332158>.

5. Zhao B, Gan L, Graubard BI et al. Associations of dietary cholesterol, serum cholesterol, and egg consumption with overall and cause-specific mortality: Systematic review and updated meta-analysis. Circulation 2022; 145(20): 1506–1520. Dostupné z DOI: <http://dx.doi.org/10.1161/ CIRCULATIONAHA.121.057642>.

6. Zhao Y, Qie R, Han M, et al. Association of BMI with cardiovascular disease incidence and mortality in patients with type 2 diabetes mellitus: A systematic review and dose-response meta-analysis of cohort studies. Nutr Metab Cardiovasc Dis 2021; 31(7): 1976–1984. Dostupné z DOI: <http://dx.doi.org/10.1016/j.numecd.2021.03.003>.

7. Hubáček J, Pistulková H, Valenta Z et al. Genetic predisposition to hypercholesterolemia in childhood. Cor Vasa 1994; 36: 68–72.

8. Valve R, Heikkinen S, Rissanen A et al. Synergistic effect of polymorphisms in uncoupling protein 1 and beta3-adrenergic receptor genes on basal metabolic rate in obese Finns. Diabetologia 1998; 41(3): 357–361. Dostupné z DOI: <http://dx.doi.org/10.1007/s001250050915>.

9. Hubáček JA. Genetické testování pro včasnou predikci kardiovaskulárních onemocnění. Celogenomové asociační studie a polygenní skóre. AtheroRew 2020; 5: 88–92.

10. Janssens ACJW. Validity of polygenic risk scores: are we measuring what we think we are? Hum Mol Genet 2019; 28(R2): R143-R150. Dostupné z DOI: <http://dx.doi.org/10.1093/hmg/ddz205>.

11. Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med 2020; 12: 44. Dostupné z DOI: <http:// dx.doi.org/10.1186/s13073–020–00742–5>.

12. Igo RP Jr, Kinzy TG, Cooke Bailey JN. Genetic risk scores. Curr Protoc Hum Genet 2019; 104(1): e95. Dostupné z DOI: <http://dx.doi. org/10.1002/cphg.95>.

13. Hubacek JA, Adamkova V, Lanska V, Dlouha D. Polygenic hypercholesterolemia: examples of GWAS results and their replication in the Czech- -Slavonic population. Physiol Res 2017; 66(Suppl 1): S101-S111. Dostupné z DOI: <http://dx.doi.org/10.33549/physiolres.933580>.

14. Lu Y, Feskens EJ, Boer JM et al. Exploring genetic determinants of plasma total cholesterol levels and their predictive value in a longitudinal study. Atherosclerosis 2010; 213(1): 200–205. Dostupné z DOI: <http:// dx.doi.org/10.1016/j.atherosclerosis.2010.08.053>.

15. Shahid SU, Shabana, Cooper JA, et al. Genetic risk analysis of coronary artery disease in Pakistani subjects using a genetic risk score of 21 variants. Atherosclerosis 2017; 258: 1–7. Dostupné z DOI: <http://dx.doi.org/ 10.1016/j.atherosclerosis.2017.01.024>.

16. Shah S, Casas JP, Gaunt TR et al. Influence of common genetic variation on blood lipid levels, cardiovascular risk, and coronary events in two British prospective cohort studies. Eur Heart J 2013; 34: 972–981. Dostupné z DOI: <http://dx.doi.org/10.1093/eurheartj/ehs243>.

17. Wu H, Forgetta V, Zhou S et al. Polygenic risk score for low-density lipoprotein cholesterol is associated with risk of ischemic heart disease and enriches for individuals with familial hypercholesterolemia. Circ Genom Precis Med 2021; 14: e003106. Dostupné z DOI: <http://dx.doi.org/10.1161/ CIRCGEN.120.003106>.

18. Sarraju A, Knowles JW. Genetic testing and risk scores: Impact on familial hypercholesterolemia. Front Cardiovasc Med 2019; 6: 5. Dostupné z DOI: <http://dx.doi.org/10.3389/fcvm.2019.00005>.

19. Vanhoye X, Bardel C, Rimbert A, et al. A new 165-SNP low-density lipoprotein cholesterol polygenic risk score based on next generation sequencing outperforms previously published scores in routine diagnostics of familial hypercholesterolemia. Transl Res 2022; S1931–5244(22)00281-X. Dostupné z DOI: <http://dx.doi.org/10.1016/j.trsl.2022.12.002>.

20. Hubacek JA, Dlouha D, Adamkova V et al. The gene score for predicting hypertriglyceridemia: New insights from a Czech case-control study. Mol Diagn Ther 2019; 23(4): 555–562. Dostupné z DOI: <http://dx.doi. org/10.1007/s40291–019–00412–2>.

21. Johansen CT, Wang J, Lanktree MB, et al. An increased burden of common and rare lipid-associated risk alleles contributes to the phenotypic spectrum of hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2011; 31(8): 1916–1926. Dostupné z DOI: <http://dx.doi.org/10.1161/ ATVBAHA.111.226365>.

22. Fava C, Sjögren M, Montagnana M et al. Prediction of blood pressure changes over time and incidence of hypertension by a genetic risk score in Swedes. Hypertension 2013; 61(2): 319–326. Dostupné z DOI: <http:// dx.doi.org/10.1161/HYPERTENSIONAHA.112.202655>.

23. Damavandi N, Soleymaniniya A, Bahrami Zadegan S et al. Development of a genetic risk score for obesity predisposition evaluation. Mol Genet Genomics 2022; 297(6): 1495–1503. Dostupné z DOI: <http://dx.doi. org/10.1007/s00438–022–01923–0>.

24. Talmud PJ, Cooper JA, Morris RW et al. Sixty-five common genetic variants and prediction of type 2 diabetes. Diabetes 2015; 64(5): 1830–40. Dostupné z DOI: <http://dx.doi.org/10.2337/db14–1504>.

25. Zarkoob H, Lewinsky S, Almgren P et al. Utilization of genetic data can improve the prediction of type 2 diabetes incidence in a Swedish cohort. PLoS One 2017; 12(7): e0180180. Dostupné z DOI: <http://dx.doi. org/10.1371/journal.pone.0180180>.

26. Goodarzi MO, Palmer ND, Cui J et al., Classification of type 2 diabetes genetic variants and a novel genetic risk score association with insulin clearance. J Clin Endocrinol Metab 2020; 105(4): 1251–1260. Dostupné z DOI: <http://dx.doi.org/10.1210/clinem/dgz198>.

27. Yun H, Noh NI Lee EY. Genetic risk scores used in cardiovascular disease prediction models: a systematic review. Rev Cardiovasc Med 2022; 23(1): 8. Dostupné z DOI: <http://dx.doi.org/10.31083/j.rcm2301008>.

28. Thériault S, Lali R, Chong M et al. Polygenic contribution in individuals with early-onset coronary artery disease. Circ Genom Precis Med 2018; 11(1): e001849. Dostupné z DOI: <http://dx.doi.org/10.1161/ CIRCGEN.117.001849>.

29. Khera AV, Chaffin M, Zekavat SM et al. Whole-genome sequencing to characterize monogenic and polygenic contributions in patients hospitalized with early-onset myocardial infarction. Circulation 2019; 139: 1593–1602. Dostupné z DOI: <http://dx.doi.org/10.1161/ CIRCULATIONAHA.118.035658>.

30. Krarup NT, Borglykke A, Allin KH, et al. A genetic risk score of 45 coronary artery disease risk variants associates with increased risk of myocardial infarction in 6041 Danish individuals. Atherosclerosis 2015; 240(2): 305–310. Dostupné z DOI: <http://dx.doi.org/10.1016/j. atherosclerosis.2015.03.022>.

31. Morris RW, Cooper JA, Shah T et al. Marginal role for 53 common genetic variants in cardiovascular disease prediction. Heart 2016; 102: 1640–1647. Dostupné z DOI: <http://dx.doi.org/10.1136/heartjnl-2016–309298>.

32. Meigs JB, Shrader P, Sullivan LM, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med 2008; 359(21): 2208–2219. Dostupné z DOI: <http://dx.doi.org/10.1056/ NEJMoa0804742. Erratum in: N Engl J Med 2009; 360(6): 648>.

33. Mosley JD, Gupta DK, Tan J et al. Predictive accuracy of a polygenic risk score compared with a clinical risk score for incident coronary heart disease. JAMA 2020; 323(7): 627–635. Dostupné z DOI: <http://dx.doi. org/10.1001/jama.2019.21782>.

34. Huang T, Shu Y, Cai YD. Genetic differences among ethnic groups. BMC Genomics 2015; 16: 1093. Dostupné z DOI: <http://dx.doi.org/10.1186/ s12864–015–2328–0>.

35. Whayne TF Jr, Saha SP. Genetic risk, adherence to a healthy lifestyle, and ischemic heart disease. Curr Cardiol Rep 2019; 21(1): 1. Dostupné z DOI: <http://dx.doi.org/10.1007/s11886–019–1086-z>.

36. Park SJ, Kim MS, Choi SW, Lee HJ. The relationship of dietary pattern and genetic risk score with the incidence dyslipidemia: 14-year follow- -up cohort study. Nutrients 2020; 12(12): 3840. Dostupné z DOI: <http:// dx.doi.org/10.3390/nu12123840>.

37. Pang S, Yengo L, Nelson CP et al. Genetic and modifiable risk factors combine multiplicatively in common disease. Clin Res Cardiol 2023; 112(2): 247–257. Dostupné z DOI: <http://dx.doi.org/10.1007/ s00392–022–02081–4>.

38. Hubáček JA, Vrablík M. Genetika dyslipidemií včera, dnes a zítra. Vnitř Lék 2007; 53(4): 371–376.

39. Ruan Y, Lin YF, Feng YA et al. Improving polygenic prediction in ancestrally diverse populations. Nat Genet 2022; 54(5): 573–580. Dostupné z DOI: <http://dx.doi.org/doi:10.1038/s41588–022–01054–7>.

40. Zhao Z, Fritsche LG, Smith JA et al. The construction of cross-population polygenic risk scores using transfer learning. Am J Hum Genet 2022; 109(11): 1998–2008. Dostupné z DOI: <http://dx.doi.org/10.1016/j. ajhg.2022.09.010>.

Labels
Angiology Diabetology Internal medicine Cardiology General practitioner for adults

Article was published in

Athero Review

Issue 2

2023 Issue 2

Most read in this issue
Login
Forgotten password

Enter the email address that you registered with. We will send you instructions on how to set a new password.

Login

Don‘t have an account?  Create new account

#ADS_BOTTOM_SCRIPTS#